Inovace tohoto kurzu byla v roce 2011/12 podporena projektem
CZ.2.17/3.1.00/33274 financovanym Evropskym socialnim fondem
a Magistratem hl. m. Prahy.

OPP [JRrAHA EVROPSKA
A Ueanlc UNIE

Evropsky socialni fond
Praha & EU: Investujeme do vasi budoucnosti

Embedded and Real-Time Systems

Soft Real-Time
Systems

Periodic tasks

Soft Real-Time Systems Embedded and Real-Time Systems

* Many tasks do not require hard-real time approach
= When deadline overruns are infrequent and/or acceptable
= Hard-real time scheduling may lead to resource waste

System with transient overloads but
high average resource usage
A load

average

Underloaded system with
low average resource usage

o

time
Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Characterizing soft real-time tasks

Soft Real-Time Systems

Embedded and Real-Time Systems

« Based on utility functions that states the value of the

b

result based on the time it is delivered
4 v(f;)
NON REAL TIME
=f.
1 vif;)

FIRM

v(f ;)

HARD

¥

- Y

d.

1 1

Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Soft real-time systems

Soft Real-Time Systems Embedded and Real-Time Systems “InS

* We do not optimize for deadlines, but for the
delivered value

- Cumulative value: T4 =) v(f)

Overload conditions

Soft Real-Time Systems

Embedded and Real-Time Systems

* The system may thus experience load greater than 1

 Load defined as:
p(t) = max p;(t)

_ degdi ci(t)

(t
pi(t) i —

p 0 =23

-

i . P 2(t) =3/4

1) =5/6
P =3

TR R R
0.75 1
0.5 -
0.25 1

Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Handling overloads

Soft Real-Time Systems Embedded and Real-Time Systems

 Classical algorithms do not cope well with overloads (e.g. EDF)

T3

Ty

Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Handling overloads

Soft Real-Time Systems Embedded and Real-Time Systems

« Strategies to handle overloads

= Best effort scheduling
° NO predlctlon for ek always accepted o

Ready queue

overload conditions

= Simple Admission control

* Incoming task may g ACSpNCS
. Test
be rejected

accepted

rejected g

= Robust scheduling

* Incoming task may cause
rejection of existing tasks

scheduling
policy

Planning

reclaiming
policy

Ready queue

Ready queue

refection
policy

Reject quene

Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Robust Earliest Deadline (RED)

Soft Real-Time Systems Embedded and Real-Time Systems Kasis

* Robust scheduling algorithm

 Each task has
= worst-case execution time (C})
= relative deadline (D;)
= deadline tolerance (M)
= importance value (V;)

» Tasks are scheduled according to deadlines and
accepted based on secondary deadlines (i.e.
iIncreased by deadline tolerance)

Robust Earliest Deadline

Soft Real-Time Systems Embedded and Real-Time Systems

 RED computes residual laxities L; = d; — f;
This can be computed in O(n)

e Then computes maximum exceeding time:
Enar = max(FE;)
E;, = maX(O, —(Lz —+ Mz))
* This gives a clue how much time is needed. Then RED

selectes some tasks (e. g. least valued the rejection of can
solve the overload) and rejects them.

RED - Resource reclaiming

b
<> B
Soft Real-Time Systems Embedded and Real-Time Systems

 RED keeps the rejected tasks in a special queue and
re-accepts them when some task finishes before its
WCET

« Only tasks with positive laxity are re-accepted

* Those with negative laxity are discarded from the
queue

RED - Performance evaluation

Soft Real-Time Systems Embedded and Real-Time Systems

Nominal load = 3

1 1 I I 1 I
e
09 - RED o «— robust -]
GED -+- <— Quaranteed
EDF -&--
“~best effort EDF
08 s y
,’,’g‘/l’
OT — /,"_/ ,’, i —]
o o
15 0.6 F] “ .
5 d,-*"/
> osk e P)
T . _,,+”/
= a
Ratio of the cumulative .
value achieved by an e
algorithm and the total o -
value of the task set T B=1- ActualComputationTime
02 F =" Worst — CaseComputationTime A
0'1 1 1] | | | |
0.1 0.2 0.3 0.4 0.5 0~ 07 0.8 0.9

Average unused computation time ratio (beta)

Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Enforcing temporal protection

Soft Real-Time Systems Embedded and Real-Time Systems

* A simple way of enforcing temporal protection is to
use constant bandwidth servers for tasks, which are
allowed to overrun

U,, =0.15
CBS
82"01
=025
3
] ©Bs, ,LS

EDF

\/

Performance degradation methods

Soft Real-Time Systems Embedded and Real-Time Systems

* In this approach, overloads are not solved by rejecting tasks
but by degradation of tasks

» Service adaptation
= Load is controlled by reducing the computation times

 Job skipping

= Load is reduced by aborting entire task instances

* Period adaptation
= Load is reduced by relaxing timing constraints

Service adaptation

Soft Real-Time Systems Embedded and Real-Time Systems

« Each task has two parts
- Mandatory subtask M.

* Must be completed

- Optional subtask O

« Comes after the mandatory part
« May be aborted
« Corresponds to precising the results, etc.

Imprecise schedule

Soft Real-Time Systems

o
NI EN I F=
_ e

o
oo LI n| | &~

f GioEs
et bites
pr
ety
B

S Y.

i o A
AT
e
LA
B
L
! ¥ -
I 1
1 1
1 1
1 1
[1
I |
P
k. ks LA
: : bt ‘:r "&i’,‘r‘f&‘{%@.
Feint S
I | L
G, -
T T
I |
1 1
I 1
[} 1
I I
I 1
FrTE—— T
I 1 bt SR
Pl e
Bt : e et
! ! e e ' | | | o

6 3 10 12 14 16 18 20 22

Figure take;from Buttazzo, G. et al: Soft Real-Time Systems

Service adaptation

Soft Real-Time Systems Embedded and Real-Time Systems

« Hard real-time tasks have optional part empty

« We can define the error: € = 0; — 0
= 0; is the time really allocated to subtask O;

T
- and average error: €= Y wje;
i=1
- w; is the importance of the task

« |If tasks cannot be degraded in this way, it is still possible to have
several implementations of a task from which, the scheduler may
choose

Job skipping

Embedded and Real-Time Systems
Soft Real-Time Systems

« Each task has a skip parameter

Task3
= Tells after how many instances Task Taskl | Task2 a

: 5
one may skip one task Computation l 2

| - 12
= Skip parameter of infinity Period 3 4

means hard task

Skip Parameter 4 3 0

e .
5 TR s
- '}"(r"cr‘,“&‘?d . ;&%&%&%&.
' e B : b
. T) e X pe s
ErereEeEn b : gt endad s o
o G .

b . P F ' Sl
) St e - e

b o et

l é‘%,"‘%&‘.’ﬁt G

. s

2B

i

. T
BRI <o A ' . bt
T SESE %tr&%.‘rb‘,ﬁa&bq . . [
o b :
i 3 - ekt et el
. . T e .lrurlrgwrurh.uq,.
. T froiad i e e
SRR P e E"&"tr‘é"&*"lﬁ"«“&‘é"«"&‘é": e
RS R et e Bl rsdn s dn ity i e e
] B P =
L fekeit Gl
e G e
’ PO P]
e e e B R
2 e Ve A

i Ay
R

T

; ; T eI Fphby
T3) ; : K ,1,s_r‘e‘.*:"‘:s«?s_r‘é‘?c'&s&’s:?.?«?y‘.‘s::!:a,g.ssa*:a,s«.ssaa,sr.,_e.. i 2
‘j = H i .

. . H ;. I
- . H . o - - - . FRT I
. o
=
. .
[T
: -
. TR
T .
oty
.
T
. .
.
. '
. i

-Ti tems
Figure taken from Buttazzo, G. et al: Soft Real-Time Sys

Job skipping

b
<> B
Soft Real-Time Systems Embedded and Real-Time Systems

* |Instances of tasks divided to:
= Red instances — must complete before its deadline
= Blue instances — can be aborted at any time

= |f a blue instance is skipped, then next s-1 instances must be
red

= |f a blue instance is completed, the next instance is also blue

* Algorithms under EDF
= Red tasks only

= Blue when possible (blue scheduled when there are no ready
red jobs to execute)

Schedulability of skippable tasks

A—(('
Soft Real-Time Systems Embedded and Real-Time Systems

e Givenset I' = T;(p;, ¢, s;) of n periodic tasks that allow skips
an equivalent processor utilization factor can be defined as:

(¢, [0, L))

07 = ax{ Z o)
where
DG, [0.L) = (| 2] = |-)e

Di PiSi

* A setI of skippable periodic tasks, which are deeply-red, is
schedulable if an only if

Ur <1

Schedulability of skippable tasks

b
<> B
Soft Real-Time Systems Embedded and Real-Time Systems

* Deeply red means that all the tasks are
synchronously activated and the first s, — 7 instances

of each task are red.

* This is kind of the worst case of the schedule

Spare capacity in skippable schedule

b
<> B S
Soft Real-Time Systems Embedded and Real-Time Systems

* Given a set of periodic tasks that allow skip with equivalent
utilization U and a set of soft aperiodic tasks handled by a
server with utilizaiton factor Uy, the hybrid set is schedulable
by RTO or BWP if:

U +U, <1

Spare capacity in skippable schedule

Soft Real-Time Systems

CBS

Us=175

Embedded and Real-Time Systems

Task Taskl | Task2
Computation 2 2
Period 3 5
Skip Parameter 2 o
U, 1.07
U, 0.8
1-U7 0.2

Figure taken from Buttazzo, G. et al: Soft Real-Time Systems

Period adaptation — Elastic model

b
Soft Real-Time Systems Embedded and Real-Time Systems ‘

* Tasks have nominal period 7;,,
maximum period 7;, .. and elastic coefficient E;

« Task period may be stretched up to the maximum
period

* The bigger the elastic coefficient, the more voluntary
Is the task to stretch its period

* The idea behind is that task utilization is like a spring,
so we compress the task utilization

= This has to be done iteratively due to period length
constraints

Task compression

Soft Real-Time Systems

Embedded and Real-Time Systems
Algorithm Task_compress(I', Uy) {

O—Z" C./Tzio;
mzn Z Oi/'Ti.m_a_L. s
if (Ug < U :rnz.n._) return INFEASIBLE;

ok = 1;
for (each 7; € T',) {
if (E; > 0)and(T; < T;,,,) {

do | T) 4
LZ — LZU - (vo — Yd + Lf)Ez/Eva

Drf - Crvu = E'L’ = 0; T C / LT? ’
for (each 7;) { if (15 >7T;,,,.)1
if ((E; ==0or(T;==T;,_..)) di = 5
p = Up 4 Ui ok = 0;
else { 1
E,=FE,+ E;

T __FJ7 T
L’ vo T LJ 0o + LJ 20

+ while (ok == 0);
return FEASIBLE

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

